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THE TEICHMULLER THEORY OF HARMONIC MAPS

MICHAEL WOLF

1. Introduction

Let M be a smooth, closed, compact surface of genus g > 2, let Λ€1I de-
note the space of constant curvature —1 metrics on M, and let σ\dz\2 denote
a particular element of ̂ #_χ. The group of diίfeomorphisms isotopic to the
identity, Diffo, acts by pull back on ^#_i, and we can define the Teichmuller
space of genus #, Tg, to be the quotient space */#_i/ Diffo. In studying
Teichmuller space, it is natural to pick out a particular hyperbolic metric
from each class; here we choose as our representatives the metrics /o|cto|2

which have the property that the map id: (M,σ\dz\2) —• (Λf,p\dw\2), which
is the identity as a map on M, is harmonic as a map of Riemannian manifolds.

Naturally associated to a harmonic map id: (M,σ,z) —• (M,p,tu) is a
quadratic differential Φ(σ,p)dz2, which is holomorphic with respect to the
conformal structure of σ. This then defines a map Φ(σ, •): Tg —• QD(σ) from
the Teichmuller space to the space of holomorphic quadratic differentials on
(M,σ).

Sampson [17] showed that Φ is injective and continuous; here we first show
(Theorem 3.1) that it is also surjective so that, via Φ" 1 , QD(σ) provides
global coordinates for Tg. The rest of this paper is an investigation of those
coordinates.

Thurston ([5], [22]) introduced a compactification ~fψ of Tg that differed
from the previous compactifications of Tg in that the action of the map-
ping class group (isotopy classes of orientation preserving diffeomorphisms)
on Tg extended continuously to the boundary dT*h. From the homeomor-
phism Φ: Tg « QD(σ), we also obtain a compactification T^(σ) of Tg given
by adjoining points at oo to the rays of the vector space QD(σ). We show

(Theorem 4.1) that Tj*(σ) is the Thurston compactification Ίf1, and so
is independent of the choice of σ as a base hyperbolic metric.

Naturally associated (see [10]) to a holomorphic quadratic differential Φdz2

is a pair of measured foliations on M, topological objects. At all points p G M
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where id: (Af,σ) —• (M,/>) is not conformal, there are two distinguished lines
in TPM along which the map stretches the most or the least. The foliations of
Φ(cr, θ) dz2 integrate the maximal and minimal stretch directions where they
are denned, and it is natural to speak of the maximal or minimal stretch
foliation. We consider the asymptotics of a family of metrics pt whose as-
sociated holomorphic quadratic differentials Φ(σ, pt)dz2 form a ray tΦodz2

(t > 0) in QD(σ); for such a family, the foliations of Φ(σ, pt) are constant
in ί, and only the measures of the measured foliations change. The proof of
Theorem 4.1 proceeds by showing that, at all but the finitely many points
where id: (M,σ) —• (M, p) is conformal, the transverse measure associated to
the minimal stretch foliation of Φ(σ, ρt) dz2 is asymptotic to half the amount
of the maximal stretch of id: (M, σ) —> (M, pt) So, in a very rough sense, the
measured foliations asymptotically approximate their associated metrics, and
so a projective class of measured foliations provides a natural limiting point
for the family of metrics {pt} Moreover, since the measured foliations are
topological objects, we expect the boundary of Tg which the projective classes
represent to be natural, in the sense that it will be independent of the base
point (M, σ) in 7^, and that the action of the mapping class group on Tg will
extend continuously to T£.

Working locally, we find that the coordinates Φ: Tg —• QD(σ) are related
to the Weil-Petersson geometry of Tg. Using these coordinates, we describe
a simple recursive method for computing all of the variations of hyperbolic
metrics away from (M, σ). Using that method, we find that the Hessian of
the total energy of a harmonic map, viewed as a function on Tg x Tg, is the
Weil-Petersson metric, and that the fourth variation of the total energy, in
the coordinates of Φ, is a multiple of the Weil-Petersson curvature tensor.
This method has been used by Jost [12] to derive the Kahler structure and
curvature tensor of the Weil-Petersson metric via harmonic maps.

The idea of using harmonic maps to investigate Teichmuller space is not
new. Indeed, in 1954, Gerstenhaber and Rauch [8] began a program aimed
at proving Teichmύller's Theorem via harmonic maps; their difficulties were
finally recently overcome by Reich [14]. Earle and Eells [3] used harmonic
maps to portray the space of conformal structures as a trivial fiber bundle
over Tg with fiber Diffo, and to give an explicit section from Tg into the space
of conformal structures. Finally, while here we show a homeomorphism from
Tg to QD(σ) by fixing the source surface (M, σ) and varying the target surface
{M,p) over Tg, Tabak [21], fixing the target surface (M, p) and allowing the
source surface (M, σ) to vary over T ,̂ gave a bijection between Tg and a class
of nonholomorphic quadratic differentials on the target surface (M, p).
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The organization of the paper is as follows. In §2, we give the necessary
background, define our terms, and introduce our notation. §3 is devoted to
showing that Φ: Tg —• QD(σ) is a homeomorphism onto QD(σ). In §4, we
construct the compactification T^[σ) and prove Theorem 4.1: T£(σ) « T*h.
The discussion of this is broken into subsections: in §4.1, we describe the
motivating example of the asymptotics of harmonic maps between hyperbolic
cylinders with boundary; in §4.2, we state the compactification theorem; and
in §4.3, we prove the compactification theorem using the technical results
about asymptotics of harmonic maps which are finally proved in §4.4. In
§5, we discuss the local geometry of the coordinates QD(σ): §5.1 describes
our computational method, and §5.2 discusses the local geometry of the total
energy function.

This paper contains the results of the author's thesis. It is a pleasure for
him to thank his thesis advisor, Steven Kerckhoff, for all of his help and Halsey
Royden for suggesting the problem and for many useful conversations.

Thanks also go to the referee for his careful reading of the manuscript, and
his detailed and very useful comments.

2. Notation and background

Let M be a fixed, C°° surface. Consider the metrics σ\dz\2 and /?|d?i;|2 on
M, where z and w are conformal coordinates on M. For a Lipschitz map

w: {λf,σ\dz\2) -+ (M,p\dw\2)

we define the energy density of w at a point to be

and the total energy

E(w,σ,p) = / e(w;σ,p)σdzdz
JM

= / p(w(z))\wz\
2 + p(w(z))\wz\2dzdz,

JM

so that evidently the total energy depends upon the metric of the target
surface, but only upon the conformal structure of the source.

A critical point of the energy functional is called a harmonic map; the
Euler-Lagrange equation for the energy functional is

τ(w) = wZz + {log p)wwzwγ = 0,

which again depends on the metric of the target but only on the conformal
structure of the source.
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Now

w*p = pwzwjdz2 + {p\wz\
2 + p(\wγ\2) dz dz + pwzwjdz2

= Φdz2 + σe(w) dz dz + Φ dz2,

which defines

Let

1
Φdz2 = {-I 4 .

d

~dx

2

_

P

d

^y

p(w(z)) p(w(z))

' σ(z) ™ σ(z) •""•

be the Jacobian of w. Then if f{w){j>) Φ 0, it is easy to show (see [17]) w
harmonic o τ(w) = 0 Ό> Φdz2 is a holomorphic quadratic differential. So if
w: (M,σ) —• (M,p) is holomorphic, we set

Define QD(σ) to be the space of holomorphic quadratic differentials on (M, σ).
Now for any holomorphic quadratic differential a = Φdz2 £ QD(σ), if a(p) φ
0, there is a natural conformal coordinate <; = ξ + iη so that a = d£2 near p.
The curves £ = const and η = const define a pair of foliations with transverse
measures μhor(α) = ζ*\dη\ and μVert(«) = C*|d£|> respectively. These easily
extend to where a(p) = 0 to give a pair of transverse (singular) measured
foliations associated to α, called the horizontal {Fιloτ(a), μ\loτ(a)) and vertical
{Fyeτt(a), μVeτt{a)) measured foliation of α, respectively. In the case where
Φ dz2 is determined by a harmonic map, if z = x + iy and d/dx and d/dy
are tangent to the foliation in a neighborhood (where Φ / 0), then d/dx and
d/dy are the directions of maximal and minimal stretch of the differential dw,
and

' d 2 _ w ±\\2) dz2

with the coefficients of dz2 determining the transverse measure to the folia-
tions x = const and y = const.

Almost everything connected with a harmonic map between surfaces can
be written in terms of two auxiliary functions; indeed, much of this work can
be seen as a fugue on equations of these functions. So we define

σ(z)

σ(z)
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Then, defining

A _ 4 d2

 κ(ns
 2 d2 log σ 2 d 2 log p

^ l K { σ ) ~ ~ I K{p) =

on (M,σ\dz\2), we find that the Euler-Lagrange equation gives the following

equations (see [18]):

(1) Δlog F = -2K{p)& + 2K(p)£? + 2K{σ), where &{p) φ 0,

(2) Δlog-S* = -2K(p)& + 2K{p)& + 2ϋC(σ), where ^ ( p ) ^ 0.

Now, we will restrict ourselves to the situation where K(σ) — K{ρ) = —1.

Also, for most of the discussion, (M,σ\dz\2) will be a fixed hyperbolic sur-

face, while (M, p\dw\2) will vary over Tg. In the situation where the target

surface has negative curvature, Eells and Sampson [4] proved the existence of

a harmonic map in the homotopy class of the identity, Hartman [9] proved

its uniqueness, and, independently, Schoen-Yau [18] and Sampson [17] showed

that this map is a diffeomorphism and that %? > 0.

Finally, we collect some formulas which apply to our source and target

surfaces of constant curvature —1.

(I) The energy density = e = & + S?.

(II) The Jacobian = f = JΓ - &.

(III) The norm of the quadratic differential |Φ| 2 /σ 2 =

(IV) The Beltrami differential v =

(V) while \v\2=5?/βr.
(VI) Δ l o g ^ = 2 ^ - 2 ^ - 2.

(VII) Δ log-S* = 25? - 2β? - 2 where & φ 0.

(VIII) w*p = Φdz2+σedzctz +
(IX) Φ =

3. Φ: TgπQΌ{σ)

Let M be a fixed C°° surface of genus #, and σ a fixed hyperbolic metric.

We represent each point in Tg by a hyperbolic metric; this determines a unique

harmonic map homotopic to the identity on M:

w = w(ρ) = w(σ, p) : (M,σ|dz | 2 ) —> (M, ρ\dw\2),

and consequently a holomorphic quadratic differential Φ E QD(σ):

This describes Φ as a well-defined map Φ: Tg —> QD(σ).
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Theorem 3.1. Φ is a homeomorphism from Tg onto QD(σ).
Proof. Both Tg and QD(σ) are 6*7 — 6 dimensional cells, so by Brouwer's

invariance of domain, we need only show
(i) Φ is continuous,

(ii) Φ is 1 - 1,
(iii) Φ is proper.
Property (i) is clear from the uniqueness of the harmonic map in each

homotopy class, and is probably first due to Sampson as reported in Earle-
Eells [3].

Property (ii) is also due to Sampson [17]; we include here for completeness
a slightly rearranged proof.

We combine (IV) and (III) to obtain, for h = log^,

Ah = 2eh - 2|Φ| V 1 - 2.
Consider p\ and p2 hyperbolic metrics representing different points in Tg, and
let Φi = Φ(pi).

Suppose Φi = Φ2 = Φ. Using the obvious notation, we claim that then
hi = /&2, for if hi > h% somewhere, we can look at a maximum of hi — h<ι and
find that

0 > Δ(fti - ft2) = {ehl ~ eh2) - |Φ| 2(e~Λ l - e"h2) > 0,
since at such a maximum hi > /12. So hi < h^ and, symmetrically, h<ι < Λi,
proving the claim. So ̂  = ̂ , and since <%Ί*&ι = |Φ| 2 = J^Jz^ and %{ > 0,
we find that 3?ι — 2^- Consequently eι = β2, and (VIII) then shows that
wι*pι = W2*P2 so that wι o w^1: (M, P2) -^ (M,pi) is an isometry isotopic
to the identity.

We are left to prove the properness of Φ. Define ||Φ(p)|| = fM\Φ\dzdz.
First prove

Lemma 3.2. ||Φ(p)|| -^ 00 «* E(p) -• 00.
Proof Since & - 3* = f and $fσ dzdz = -2πχ, we have

/ β?σ dzdz + 2πχ = / 3*σ dzdz = / Φvdzdz since the integrands agree

< / |Φ| dzdz since ̂ f > 0 implies \i/\ < 1

= ί ^\u\σdzdz by (IX)

< /βfσdzdz= ί\sfσdzdz-2πχ.

So by adding the first two and the last two equalities we find

/ eσ dz dz 4- 2πχ < 2 / \Φ\dzdz< eσdzdz- 2πχ,

proving the lemma.
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So to show the properness of Φ(p) : Tg —* QD(σ), we only need to show
Proposition 3.3. E(p) :Tg-^R is proper.

Remark. Schoen-Yau [19] proved the properness of E(σ): Tg —> R, where
E(σ) = E(σ,po)', here po is a fixed target hyperbolic metric and the source σ
varies over Tg.

Proof. We need to show that B = {p € Tg: E(p) < K} is compact
in Tg. We denote by lp([η]) the p-length of the geodesic representative of
[7] G TΓIM; it suffices to show that ^([7]) < c2(σ)Kι/2lσ([η\). This will follow
immediately from the Courant-Lebesgue lemma (see [11, pp. 19-20]): we will
show that if dσ(xχ,x2) < δ < Ci(σ), then

dp(w{x1),w(x2)) < Ay/ϊπK^ilogil/δ))-1'2.

Before starting that, we rid ourselves of an unnecessary complication; since
w: (M,σ) —• (M,pt) is harmonic and homotopic to the identity, the identity
map id: (M,σ) —• (M,w*pt) is harmonic. But since Tg consists of classes
equivalent under the action of Diffo, we might as well have originally chosen
w*pt to represent the class [pt] GΓ g . So we will assume for this argument
that pt was chosen so that id: (M,σ) —> (M,pt) is harmonic.

Now, suppose dσ(x\,X2) < δ < min(l,inj(σ)2, l/(λ2)), where —λ2 is a
lower bound for K(σ), the curvature of σ. Of course the restriction on K(σ)
is not really needed here, but we include it to show the role of curvature.
Now introduce coordinates (r,0) so that xi, x2 € Bσ(xo,δ) for some XQ and

Indeed G(r,θ) = (l/λ)sinhλr for the metric of constant curvature.

So if X3, £4 G dBσ(x0,r), then

w2 \1/2

l
Let A = A(xo,δ1δ

1/2) be the annulus centered at x0 of inner radius δ and
outer radius 51/2, distances being measured in the σ metric.

K>E(σ,p) > II eσdzdz

d IΓ dβdr

\ldθdθ\ldθWYl
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Since G(r,θ) = (I/A) sinhλr, for r < δ1'2 < 1/λ we find that G(r) < 2r and
therefore

So we can find some r € (δ, δ1' ) with

dI
2π α 2 / -, \ -1

For that choice of r in (3.1), inequalities (3.2) and (3.3) yield

ί log-J

Remark. Classically, much of Teichmuller theory has been based on the
study of the Beltrami equation w^ = μwz, where the parameter μ belonged to
some (typically) infinite dimensional function or tensor space; an appropriate
equivalence relation is often required to pass from the parameter or solution
space to Teichmuller space. Theorem 1.1 implies that we can solve

(3.4) Δlog,r = I T - 2\Φ\2/{σ2^) - 2

on a Riemann surface (M,σ) for any parameter Φ E QD(σ); then ^
Φ dz2 + σ{%? + |Φ | 2 /(σ 2 ^)) dzdz + Φdz2 is a hyperbolic representative of a
point in Tg, determined by and determining Φ uniquely. So we can interpret
Theorem 1.1 as saying that Teichmuller space can be studied through (3.4),
where the parameter space is finite dimensional and no equivalence relation
needs to be applied.

We will study the variational theory of this equation in §5.

4. The harmonic maps compactification of Tg

Since Φ: Tg —• QD(σ) is a homeomorphism onto QD(σ), the vector space
QD(σ) provides coordinates for Tg centered at σ, as well as some distinguished
submanifolds in Tg. In particular, let Φo E QD(σ) be a nonzero holomorphic
quadratic differential on (M,σ). Then ίΦ0, t G R, t > 0, is a ray in QD(σ)
with vertex at 0. Via the homeomorphism Φ, tΦo determines a family of
metrics pt with po = σ so that ρt leaves every compact set of dTg; on the other
hand, tΦo also determines a family of measured foliations on M as described
in §2. In this section we describe an asymptotic relationship between the
family of hyperbolic metrics {pt} and the family of vertical measured foliations
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4.1. An example. We begin with the example of M being a hyperbolic
cylinder with boundary in which both families can be explicitly described.
Specifically, we realize (M,σ) as the rectangle [—1,1] x [0,1] in the 2-plane
with metric ds2 = dx2 + dy2 (identifying [-1,1] x {0} with [-1,1] x {1} to
obtain a cylinder), and (M,pt) as the rectangle [-cosh"1 ^cosh"11] x [0,1]
in the w-plane with the metric ds2 = du2 + [(cosh2 u)/t2] dv2 (identifying
[cosh"1 £, — cosh"11] x {0} and [cosh"1 ί, — cosh"11] x {1} to obtain a cylin-
der). Then pt has constant curvature —1, while σ has vanishing curvature,
which is of no consequence for us since, as we noted earlier, only the conformal
structure of the source manifold is important for the harmonic map equation.
The metric pt is normalized so that the curves u = i cosh" 1 1 have ρt-\engih
1, while the curve u = 0 has pt-\ength ε = 1/t.

- 1 1
ds2 = dx2 + dy2

-cosh""1*

ds2

pt = du2 +

cosh"1*

(?«*"•)dv2

FIGURE l

We consider maps w : (M, σ) —• (M, pt) with the boundary condition that
w(±l,2/) = (icosh" 1 ί,t/); because of the symmetry of the situation, we can
describe the harmonic map in this class as w = u + iv, v = y, u = u(x). We
easily compute the Euler-Lagrange equation in this one-dimensional case to
be

u"{χ) = — sinh 2tx, ι*(0) = 0,
ΔZ

= cosh"11.

We consider the solution

u = x cosh"11 + β(x), β{0) =0 =

so that β represents the deviation of the map from being affine.
It is not hard to show that β —• 0 as t —» oo. So for t very large, w = u + iυ

deviates very little from an affine stretch. We can rephrase this in terms of
vertical measured foliations as follows. The holomorphic quadratic differential
Φt associated to pt is given by

II d

dx
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It has a vertical foliation given by the curves x = const in the z-plane, and
a transverse measure of

1
r I \u*dx~

Pt

d
V*Ty

the coefficient of which, being both real and holomorphic, is a constant. So
given a horizontal line segment 7: a < x < 6, the vertical measure of this
segment is

dx

fbl\\ A
~Ja 2\Γdx

On the other hand, the pt-length of w(η) is

so that, since Wv^d/dyW^ w e

So the import of w deviating very little from an affine map is now clear:
topologically (the minimal stretch), vertical lines that are equally spaced with
respect to the pt metric, will, when pulled back to the £-plane, converge to
vertical lines that are equally spaced with respect to a measure for the vertical
foliation. Moreover, we could go on to show that given any arc 7, the ratio
of half its pt-length to its measure against the vertical foliation of Φt goes to
unity; this means that the asymptotic ratio of pt lengths of two arcs 71 and
72 is determined by the ratio of their measures against any Φ* foliation, which
is a topological object on the cylinder.

4.2. Statement of the compactification theorem. We want to gen-
eralize this situation to compact surfaces of genus g > 2; in order to make
a precise statement we first describe the Thurston compactification T*h of
Teichmiiller space. (A good reference for this is [5].) Let S? be the set of
isotopy classes of simple, homotopically nontrivial curves on M, let JϋtF be
the space of measured foliations up to isotopy and Whitehead moves, and let
J#&'* be the space of nontrivial measured foliations on M up to isotopy and
Whitehead moves. Let TΓ : R ^ — 0 —» P ( R ^ ) be the natural projection onto
the projective space of functional ^
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Let p be a hyperbolic metric on M; then for each class [7] G c5 ,̂ there is a
unique p-geodesic 7 G [7] representing [7] on (M, p), and we can measure its
p-length, lp{*i). Thus we have maps

and, in fact,

π o l : T g ζ

is an injection (see [5]). We can also assign a functional to each nonzero
measured foliation (^,μ) G ̂ ^*: we define the intersection number of [7]
with ( ^ , μ) to be

i(Sr,μ',[η])= inf / μ,
ieli]JΊ

the infimum of //-transverse measures of representations of [7]. So we get
another map

- R f -0,

which is also an injection; we identify Jίf^* with its image in R^\ Finally we
define the space of projective measured foliations to be ^^ = f o / ( i ^ * ) c

_
The Thurston compactification is T*h = π o l(Tg) U ̂ ? ^ with a topol-

ogy induced from the topology of PΈt^ (see [5]). Thurston proves that
<^y « 5 6 ^" 7 and that η p c P(R+^) is a compact manifold with bound-
ary, homeomorphic to a closed ball with boundary sphere &&'.

By construction, Thurston's compactification of Tg does not depend on a
choice of base point within 7^, and since the mapping class group Γg acts
continuously on JR?, its action on Tg extends to T*h. This compactification
should be contrasted with Teichmύller's compactification of Tg: by attaching
points at 00 to Teichmuller's embedding of Tg into QD(σ) we obtain a com-
pactification Tj{σ) which does depend on a choice of base point in Tg, and
on which the action of the mapping class group does not extend continuously
to dΊf(σ) [13].

Define, recalling that ||Φ|| = JM |Φ| dzdz,

= {ΦGQD(σ):| |Φ|| =

BQD(σ) = BQD U SQD with the QD(σ) topology.
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Now we define a map

given by Φ(p) — 4Φ(/p)/(l + 4||Φ(/θ)||). Clearly Φ is a homeomorphism onto
BQD(σ). Using Φ to identify Tg with BQD(σ), we define a new compactifi-

cation of Tg,
Ίf{σ) = TgU SQD(σ) = BQD(σ).

The goal of the rest of this section is to prove
Theorem 4.1. T£(σ) « fψ.

Corollary 4.2. T^(σ) = Tj1 is independent of the choice of base point
σ. The action of the mapping class group Tg on Tg extends continuously to
an action onlf. If £ ΪJ.

Remark. Theorem 4.1 provides an internal ray structure to Thurston's
compactification of Tg from each point σ of Tg.

The proof of Theorem 4.1 depends on a description of the asymptotics of
the Beltrami differentials for the harmonic maps.

Proposition 4.3.. Let Φo E SQD(σ). Let {pt} = φ-^ίΦo,* > 0} be the
family of hyperbolic metrics determined bytΦ^. Let v(i) € Belt(σ) be the fam-
ily of Beltrami differentials determined by the harmonic maps w(t): (M,σ) —•
{M,pt), i.e.,

i/(ί) = w{t)τ/w{t)z.

ThenifΦo(p)ϊ0,\v(t)(p)\211.
We postpone the proof of this proposition until §4.4.
By construction, the foliations of Φ{pt) = έΦo are fixed for all ί; only the

measures of the measured foliations associated to tΦo change, and Proposition
4.3 can be understood as describing the asymptotics of these measures as
t —• oo. Towards this end, let d/dx, d/dy be an orthonormal frame field
on (M,σ) (away from the zeros of ΦQ) tangent to the horizontal and vertical
foliations, respectively. Then, by construction, d/dx and d/dy are also the
directions of maximum and minimum stretch of the differential map dw(t).
So in these coordinates,

\\dy\\pt\

, m , = l-\\d/dy\U\\d/dx\\Pt
| μ U I l + \\d/dy\\pJ\\d/dx\\Pt-

Let |M|φ(Pt) be the norm given by the (singular) flat metric ds\, , =

ί|Φ0 | \dz\2 to a vector υ e TPM, Φ0(p) φ 0. Then

(4.1) d_

dx Pt

I -
\dy
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Thus we can rephrase Proposition 4.3 as
Proposition 4.4. Let pt be defined as in Proposition 2.3. Then
(i) (\\d/dy\\pt/\\d/dx\\Pt) I 0 for all points p with Φ0(p) φ 0.

(ii) 1 > (2| |d/dz| |φ ( p t )/| |d/dz| |P t) \ 1 for all points p with Φ0{p) φ 0.
Corollary 4.5. Let lPt(η) denote the pt-length of the arc 7.

(a) Then \\d/dy\p\\Pt —• 0 at almost all points p.

(b) If η is a closed arc of the horizontal foliation of tΦ0, and 7 does not
contain a zero o/Φo, then there are constants CQ and C\ depending only on
7 so that

0<C0<lPt(η)Γ1/2 <d <oo.

(c) If η is an arc of the vertical foliation oftΦ0, then

lPt{η)t~1/2 ^ 0 as £-» 00.

We postpone the proof of Proposition 4.3 and Corollary 4.5 until §4.4.
4.3. Proof of the compactification theorem. Define

β: BQD(σ) -> M& C Έίf

Φ ^ β{Φ)

so that β(Φ) is the vertical measured foliation (as an element of R^) of

By a theorem of Hubbard and Masur [10], β is a homeomorphism of BQD(σ)
onto Jί^ C R^. As a consequence, we find that if | |Φ n | | —• 1? then Φn

converges in BQD(σ) o π o βφn converges in P ( R ^ ) .
We will understand the notation β{Φ) to mean

Because βΦ and /?(Φ/||Φ||) represent measured foliations which have the
same underlying foliation and differ only their transverse measures, for [7] G
c5*, we have

Lemma 4.6. For all classes [7] G S", there exist k0 = A;0(||Φ(^)||, [7])
and η = η(\\Φ(ρ)\\, [7]), both depending on ||Φ(/θ)|| and [7], so that

koi(βΦ(p), [7]) + η > lp([ΊΪ) > i{β*{p), W),

where k0 I 1 and ηWΦip)^1/2 — 0 as ||Φ(p)|| - 00.
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Proof. First we prove lp{[η]) > i{βΦ{p),[η\). Let 7: [0,1] -+ M be the
constant speed parametrization of a pt-geodesic. Let 7^, ηv denote the hor-
izontal and vertical components of 7 relative to the horizontal and vertical
foliations. Then

= ιP= f (\\Ί
JO

>j\\ih\\pds

>f\\ΊH7/IIUΦ(P) ds by Proposition 4.4(ii)

= i(βΦ(p)n)>i(βΦ(pUΊ}).

Next we prove koi{βΦ{ρ), [7]) + η> IP{[Ί])- This estimate requires a little
preparation.

First, we claim that for every [7] € 5? there are numbers ε([7]), #([7]),
and L([η]) so that for every Φ € SQD(σ), there is a representative 7Φ G [7]
so that

(i) all of the unbroken segments of 7 lie along leaves of either the hori-
zontal or vertical foliations,

(ii) all horizontal segments of 7Φ avoid a neighborhood of σ-radius £([7])
of the zeros of Φ,

(ni)i(βΦ,lΦ)=i(βΦ,[Ί}),
(iv) i{β{—Φ),7Φ) < ^([7]), i.e., the total length of the vertical arcs, when

measured in the metric |Φ| |d^|2, is uniformly bounded by #([7]); also 7Φ
contains fewer than L([η]) vertical arcs through zeros of Φ.

We first prove this statement for a neighborhood of an element Φo €
SQD(σ). Now the zeros of Φo, say {pi, ,pn}> are isolated; then there
is a 6(Φo) so that each disk i?2δ(Φo)(Pt) °f $o-radius 26(ΦQ) around a zero
contains only one zero of Φo, is topologically a disk, and is separated from
any other such disk, B26(Φ0)(Pi)? by a Φo-distance of at least 2<5(Φo). We also
assume that

<5(Φ0) < ί min (injectivity radius of |Φ| \dz\2) j /{Sg - 7).

We then can consider a small neighborhood N of Φo in SQD(σ) with the prop-
erties that if Φ € AT, then (a) the natural correspondence between the con-
nected components of UΦ O (P)=O^(ΦO)(P)

 a n (^ ̂ e connected components of
UΦ(P)=O^(ΦO)(P) *s a bijection, (b) each connected component C of
Uφ(p)=oBδ(Φ0){p) is a topological disk separated from the other connected
components by a Φ-distance of at least <5(Φo), and (c) a connected vertical
arc in C has Φ-length of at most K(ΦQ). (The point here is that in ΛΓ, a
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deformation neighborhood of Φo, we permit high order zeros of Φo to split
into lower order zeros so near each other that a neighborhood of them is still
topologically trivial, but we do not allow the neighborhoods of the isolated
zeros of Φo to migrate too near each other.)

Now we construct η<p. We start with a geodesic Γφ (of the metric |Φ| \dz\2\
see [20, Chapter V, especially Theorem 18.4]) which, by virtue of being quasi-
transversal, satisfies condition (iii). Outside of UΦ( P )=O^(ΦO)(P)> ^ Φ

 ιs 1°~
cally a line of constant argument in the plane, and we can replace it there by
a step-curve of arcs of the vertical and horizontal foliation, whose horizontal
measure agrees with the original horizontal measure, and whose Φ-length of
vertical arc is less than the original Φ-length of the curve. Inside one of the
connected components of UΦ(P)=O Bδ(Φ0){p)i say C, we notice that there are
at most 40 — 4 zeros of Φ and 120 — 12 connected components of vertical arcs
which have a zero of Φ as an endpoint (the latter we call critical vertical arcs).
Let 7Φ be a connected component of Γφ Π C. (There are only finitely many
such components: since SQD(σ) is compact, the minimal Φ-length of [7] is
bounded above, while the injectivity radius is bounded below and away from
(80 — 7)<5(Φo) So, because of the convexity of Bβ(φo)(p) in the Φo metric,
an arc of Γφ can pass through C only as many times as there are zeros of
Φ in C, and after doing so, it must travel at least <$(Φo) before returning
to C.) Then 7Φ will either cross or contain each critical vertical arc at most
once, since both ηφ and the critical arcs are Φ-geodesics. We can then replace
the subarcs between such intersections with a Φ-polygonal curve, all of whose
horizontal subarcs are outside of C, by a process of dragging the horizontal
measure out of C on vertical arcs as illustrated in Figure 2. This process
will preserve the horizontal measure of 7Φ while adding only a finite amount
of vertical measure and a bounded number of critical vertical arcs, the last
two because we have assumed that all connected vertical arcs have Φ-length
bounded by if (ΦQ), and we use fewer than 2(4g — 4)2 of these arcs in the
process of "dragging" the horizontal measure out of C.

Since now all of the horizontal arcs avoid a neighborhood of Φ-radius 5(Φo)
of the zeros of Φ, the horizontal arcs avoid a neighborhood of σ-radius ε(Φo) of
the zeros of Φ. So we have accomplished (i)—(iv) in a neighborhood N of Φo
Since SQD(σ) is compact we need only a finite number of such neighborhoods
to cover SQD(σ), and we find we can assume (i)-(iv) for all Φ £ SQD(σ).

Let Mε{[Ί])(p) = M ~ \Jφ(p)(p)=oBe([Ί])(p) w h e r e Bε([Ί])(p) is now the
open ball of σ-radius £([7]) around p. Let d/dx denote a vector field on a
coordinate patch on M, tangent to the horizontal (maximal stretch) foliation,
undefined in very small neighborhoods, say of σ-radius ε([7])/10, of the zero
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\

horizontal foliation = solid leaves

FIGURE 2

\\d/dx\v\\p

of Φ(p). Let

Ic2 is independent of the σ-length or orientation of {d/dx}, which is why we

could be slightly sloppy in defining {d/dx}. We next notice that ^ ( p , £([7]))

is upper semicontinuous as a function of p in Tg. To see this, we first ob-

serve that, for any δ > 0, if p is sufficiently close to po in Tg, then Mε([7])(p)

is contained in a neighborhood of σ-radius δ around Mε([7])(po). (If not,

then there would be a δ > 0, a sequence of metrics p n —• po> &nd a se-

quence of points z n G M ε([7])(pn) so that dσ(xn,M ε([7j)(po)) > 6. But,

after possibly passing to a subsequence, we can assume xn —• xo? a n d since

Φ ^ ) " 1 ^ ) varies continuously with p, we notice that d(x n ,Φ(p n )~ 1 (0) > ε

implies dσ(xo,Φ(po)~1{0)) > ε. Therefore, XQ € Mε([7])(p0) and it could not

have been true that d σ (x n ,M ε ([ 7 ])(p 0 )) > δ for every xn. Note that this ar-

gument hinges on our choice of Mε([7])(p) as being the complement in M of

open balls.)
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Thus, for p close to po? a point q G Mε^Ί^(p) at which

max

is obtained must lie within a ^-neighborhood of Mε^Ί^(p0). So, using that

\\d/dx\p\\p/\\d/dx\p\\4φ(p) is continuous both in p G M and p G Γg, we find

that fc2(p, ε([7J)) < k2{po,ε([η])) + £> 0 Γ that k^ is upper semicontinuous as a

function of p G Tg.

Let Φ o G SQD(σ) and define κr(Φ0) = fc2(Φ~1(^o)^([7])). «r is fo

restricted to the coordinate sphere of radius r in QD(σ), parametrized by

SQD(σ), and /cr(Φo) is upper semicontinuous on SQD(σ). Since SQD(σ) is

compact, we may define

Moreover, since {\\d/dx\p\\φ-ι(rΦo)/\\d/dx\p\\4rφ0 I 1) for fixed p G M as

r —• oo by Proposition 4.4(ii), we find that, for fixed Φo G SQD(σ), /cr(Φo) I 1

as r —> oc. Consequently ACΓ(Φ0) is a family of upper semicontinuous functions

on the compact space SQD(σ), pointwise decreasing monotonically to 1. So

by Dini's Theorem (cf. Roy den [16, p. 162]), /cr(Φo) converges uniformly to

1.

So fco(||Φ(/c?)||, [7]) I 1 as | |Φ(p)|| —• 00, the monotonicity coming from the

pointwise monotonicity of ^ | | Φ ( ^ ) | | ( Φ O )

We now show the estimate koi(βΦ(p), [7]) + η > Ipd^]).

Let ηh: [α, b] —• M be a parametrization of a horizontal arc which avoids

a neighborhood of σ-radius ε([7J) of the zeros of Φ(p). Then 7^ C Me(

and

,6

= /
Ja

<k2(p,ε([η}))i(βΦ(P),Ίh)

<ko(\\Φ(p)\\,ε(Ί]))i(βΦ(p),Ίh).

Next let ηv: [α, b] —• M be a parametrization of a vertical arc. Then

i(βφ(p),ηυ) = 0; on the other hand, Corollary 4.5 implies that

{lφ-HtΦ(p)/\\Φ(P)\\){Ίv)) ' t~φ - 0 as ί -> 00.
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Because the total Φ-length of vertical arcs of 7 is bounded by #([7]) of which
fewer than L([η]) subarcs are critical vertical arcs, we recognize that the
total σ-length of the vertical arcs is bounded. We conclude that there is an

Ipilv) < V and f?||Φ(p)|Γ1/a - 0 as \\Φ(p)\\ - oo.

Then, letting 7 = 7Φ ( p),

< hi!) = E h(Ίh)+

with ko(\\Φ(p)l [7]) 1 1 and fj | |*(p)ir1 / 2 -> 0 as ||Φ(p)|| -> oo.
We recall the maps πol:Tg-+ P(Rζ) and β: QD(σ) -• ̂ i y C Rf that

opened §§4.2 and 4.3.

Lemma 4.7. Lei ρn —• 9Γg, i.e., p n /eαveθ α// compact sets in Tg. Then
π o l(pn) converges if, and only if, π o βΦ(pn) converges, and in the case of
convergence, the two sequences have the same limit.

Proof. The topology of Tg is defined by a finite number of curves 71, , 7*

for which, for any Φo G SQD(σ), ΣjίOflΦo, hi!) > δ > ° f o r s o m e δ- S u P "
pose π o Z(pw) converges; then there exists a sequence of scalars λn > 0 so
that Xnl{Pn) converges in R ^ to a nonzero functional in R^\ In particular,
λn{lPn (111]), lpn ([72]), JPn {[ik])) converges to a nonzero vector in R*, and
so

3=1

k

>hi 1) b y L e m m a 4 6

Thus, λn = O(\mpn)\\-^) and so for [7] € ^ and ^ ( | | Φ ( A . ) | | , W) as in
Lemma 4.6, λnη —> 0 as n -* 00. Then since fco(||Φ(pn)||> [7]) —> 1 as n —> 00,
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and

An«(/»(Pn),H)=An

< c/δ max i(βΦo, hfl),
Φo€SQD(σ)

Lemma 4.6 gives

Thus, π o βΦ(pn) converges to the same limit as π o l(pn). The converse is
analogous.

Proof of Theorem 4.1. By dint of Lemma 4.7 we are left with an easy
exercise in point-set topology. Define φ: Tg U &ϋ?~ = lψ C P(Έt+) -•
BQD(σ) by

ίlimn | |φ[^j | | , l ) if x G dTg C P(Ifcf) and xn -• x,
φ{x) = }

where we use polar coordinates (0,r) for BQD(σ): θ G SQD(σ), r G [0,1].
We first show that φ is well defined. Suppose xn —• x G dTg C P ( R ^ )

and x'n —* x. Then by Lemma 4.7, limπ o βΦ(Xn) exists and is equal to
limπ o βφ{χ'n). Furthermore, since β: BQD —• Jί!F is a homeomorphism,
limn Φ(xn)/||Φ(xn)|| exists and equals limn Φ(gn)/| |Φ«)| |-

Next we claim that φ is a homeomorphism onto BQD(σ). First we note
that φ is continuous. Suppose xn —• x G dTg\ we need to show φ{xn) —• φ{x).
Since xn -4 dTg, | |Φ(xn)|| ^ oo which implies 4||Φ(xn)||/(l + 4||Φ(xn)||) - .
1. So ^ is continuous in its second components; it is continuous in its first
components by definition.

The injectivity of φ on Tg follows from Sampson's theorem [17] on the
injectivity of Φ: Tg —• QD(σ). Suppose then that x, x' G dTg and ^(x) =
φ(x'). We can further suppose xn —̂  x G dTg and x'n —• x' G #7^, and so by
hypothesis,

limΦ(xn)/| |Φ(xn)| |=lir

Thus
limπo/?Φ(χn) = li

n w

and Lemma 4.7 implies that x = limn xn = limn x'n = x.
Theorem 3.1 shows that φ: Tg -• BQD is surjective. To show that it is

surjective as a map dTg -> SQD, we suppose θ G SQD and rnθ -• ί. Then
πoβ(rnθ) converges (actually, is constant), and Lemma 4.7 says that Φ " 1 ^ ^ )
converges to a point x G dT^. Since ^ is continuous,

So φ is surjective.
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Finally, we claim ψ'1 is continuous. So we suppose (θn,rn) —• (0,1),
and we show /φ~1{θnirn) —> φ~1{θ11). Since {θn,rn) converges, π o β(rnθn)
converges and so, by Lemma 4.7, π o Φ~1rnθn = ί 0~ 1 (ί n ^n) converges to
x € dT^. Since, by definition, ψ(x) = lim(0n,rn) = (0,1),

n

This concludes the proof of Theorem 4.1.
4.4. Proof of Proposition 4.3 and Corollary 4.5.
Proof of Proposition 4.3. Let Mε = M ~ UΦO(P)=O

 Be(p) w h e r e βε(p)
is a ball of σ-radius ε around p. Recall that \v{t)\2 = ^{t)/^{t) and 0 <
\u(t)\2 < 1. Then

• / .

)

dA(σ)

Mt *ι -'- A(Mε)

where A(Mε) = the σ-area of Me

by Cauchy-Schwaxz

dA{σ)\1'2

x/2 / r cp AAί^\ \ X/4dA(σ)
\JM€J?J?A{M7)

(ί —
\JMe "-*

dA(σ) \ 1/4

Ά(Mε)J •

But β? — 21 > 0, and by Gauss-Bonnet

however, βT(t)&(t) = t2\Φ0\
2/σ2. So, for all ε > 0

—•0 as ί —• oo.

Next we claim that (^(Ol2)' > 0 for ί real and nonnegative, where we
use primes to indicate differentiation with respect to t. Since <%*(t)Jϊ?(t) =
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σz t
Then, if Φ0(p) ̂  0,

(4.3a) J_ ( p ) + | _ ( p ) = 2 .

We first show that # " > 0. From (IX) we have

t2\Φ0\
2=σ

2^2\u{t)\2,

so taking a derivative with respect to t gives

0 < 2*|Φ0 |
2 = 2 σ 2 ^ > | 2 +σ2JT2(\ιs\2γ.

Sampson [17] and Schoen-Yau [18] both show that ^ > 0. So

(4.4) *{\v\2)' + %"\v? > -%?'\v\2.

Now suppose W < 0 somewhere on M. Suppose p 0 is a minimum
naturally #"(po) < 0. Also, since Δ l o g ^ = i T ( l - |ι/|2) - 2 by (VI), by
taking time derivatives we find that, at the minimum po>

o " ^ 2 2

"\v\2 by (4.4)

< 0 since <%"(po) < 0 by hypothesis.

The contradiction shows that <%" > 0 for all t and at all points on M.
We now prove {\v{t)\2)' > 0 by applying the maximum principle to (VI).
Suppose that p\ is a maximum of %" /βf. Then writing

on differentiating we find, at p\

(4.5) 0 > Δ ^ = 1MT' - i S " ,

and so ̂ ' ( p i ) < ^ ; ( p i ) . This shows that Φ(pχ) ̂  0, as otherwise ^ ( p i ) = 0

^ ( ) ^ ( l

Thus #"(pi)/#'{pi) = 0, and #"&)/&&) = 0 for all p on M at the partic-
ular time t > 0 since pi was a maximum for %?'!%?. But this is impossible
since then

(the last equality by (4.3)). Hence Φ(pi) φ 0, and ΦQ(PI) φ 0.
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(4.3a) now implies that pi is a minimum for S"IS? on M ~ {Φ
Since ̂ -Sf = f > 0 on M by the theorem of Sampson [17] and Schoen-Yau
[18], we find that (4.5) gives

so that &'MT - S%f' > 0 on M ~ {Φ^ίO)}. S i n c e (M 2 ) '
(•2"*" - %"&)!'^2, and |i/(p)|a = 0 for all t if Φ0(p) = 0, we find that

(4.6) ( k ( p ) | 2 ) ' > 0 for all p<EM.

Our arguments thus far show that | ^ (£)(P) | 2 *s (by (4.6)) monotone increas-
ing in t and (by (4.2)) converging almost everywhere to 1 to M ~ {Φ^1(0)}

Finally, we need to exclude the possibility that |i/(£)(p)|2 —> δ φ 1, with
Φo(p) φ 0. (The author wishes to thank Professor W. Craig for pointing out
the following argument.) We consider the function log |^(ί) | 2 . Equations (VI)
and (VIII) taken together yield, away from the zeros of Φo,

(4.7) Δ log \v\2 = Δ log =p = -4^(ί) < 0 since f{t) > 0.

Also, log|ι/(£)|2 is monotonically increasing on Mε by (4.6). Since log|ί/(£)|2

is bounded below on Me, we see from (4.2) that log|i/(ί)|2 —• 0 almost ev-
erywhere (dA(σ)) on Mε. We now represent (M,σ) εis H2/Γ, where Γ is a
discrete group of isometries of H 2 ; in particular, we consider a fundamental
domain F in the unit disk model of H 2 for the action of Γ. Thus we can
consider Mε as a domain Fε in the disk, so that

Δ log HOI2 <0 onF ε

holds with respect to the Euclidean Laplacian. So log|i/(£)|2 is a monotoni-
cally increasing family of superharmonic functions on Fε. A standard theorem
(see e.g. Tsuji [25, p. 42, Theorem 11.16]) then implies that the limit function
log |ι/(oo)|2 is also superharmonic in the sense of being lower semicontinuous
and satisfying

logKoo)|2(*0) > - ^ if logKoo)|2(z)rdrdθ
πtί* J J\z-zo\<R

f
\z-zo\<R

for all R with {\z-zo\ < R} C Fε where z = zo+reiθ. Since log Koo) | 2 = 0 al-
most everywhere (Lebesgue) on F ε , the above inequality shows that log |ι/(oo)|2

= 0 everywhere on F ε , and so |^(£)|2 T 1 everywhere on Mε. Since ε was ar-
bitrary, we find that |^(£)|2 T 1 at all points with Φo(p) φ 0.
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Proof of Corollary 4.5. (a) Suppose \\d/dy\\Pt > δ > 0 on a set A of
positive measure with p £ A. Then on A,

fiw{t)) = \\d/dχ\\Pt • \\d/dy\\Pt > \\d/dx\\Ptδ.

Since \\d/dx\\Pt > 2 ί |Φ 0 | 1 / 2 -» oo, we have fAaf(w(t))dA{σ) -* oo, which is
impossible.

(b) We recall that d/dx is tangent to the horizontal (maximal stretch)
foliation, and \\d/dx\\σ = 1. Then

\\d/dx\\Pt ^
tι/ϊ

(since, by (KJ.ί^lΦol 1 / 2 = σ 1 / a ^ ( t ) 1 / a | i / ( t ) | 1 / 2 )

(4-8) = ( l +

since, also by (IX), | Φ 0 | 1 / 2 = <
We now want to show that (4.8) is bounded above and below. To this end,

observe that 1 < 1 + \ι/(t)\ < 2, and that 0 < c2 < ^ ( 1 ) 1 / 2 < c3 since M is
compact and ^ ( 1 ) > 0 ([17], [18] again). For the final expression in (4.8), we
notice that since η does not contain a zero of Φo, it does not contain a zero
of ι/(l) = Φ 0 /(σ^(l)) . Since |z/(£)| is increasing by (4.6), for t > 1 we have

1/2
^ t ^ # 1 tJ I I I I t

(4.9)

and the statement follows from lPt{^) = f \\9/dx\\Pt dsσ.

(c) We cannot define a σ-orthonormal frame field d/dx, d/dy at a zero of

Φo However,

away from a zero of Φo, and
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away from the zeros of Φo by (4.7). Since both sides are continuous at the
zeros of Φo, the inequality holds everywhere, and so

Since |i/(ί)| > 0, the right-hand side converges to zero by Proposition 4.3 and
the Dominated Convergence Theorem.

5. Local variational formulas

5.1. A computational method. Choose a complex basis Φi, ,
Φ3g_3 for QD(σ); then we can consider the associated local coordinates for
Tg. Specifically, for t = (ίi, , ^ _ 3 ) G C 3 *" 3 , define Φ(t) = Σ ^ Φ , and
consider the metric

(5.1) p{t) = Φ{t) dz2 + σe{t) dzdz + Φ(ί) dz2.

The identity map id: (M,σ) —* (M,p(t)) is harmonic; in this section, we
investigate how geometric quantities associated with a harmonic map vary
as functions of £, for small t. Our approach will be first to determine the
variations of <%*(t) and 5f{i) for small ί, and then to apply those formulas to
equations (I), (II) and (IV) to derive the variations ^ ( £ ) , v{t) of e(t). The
computations are straightforward after a single observation.

Lemma 5.1. &{t) > 1. Jf{t) = l<*t = 0<* &{t) = 0.
Proof. As we noted earlier, Sampson [17] and Schoen-Yau [18] both proved

%*{t) > 0. So log^(ί) is a well-defined function on all of M. Suppose £?(t)
has a minimum at p. Then

(vi) o < Δiog r =

Since & > 0,

But p is a minimum for ^ , so we see <%*(t)(q) > 1 for all q G M. Also, if
& = 1, then 0 = Δ log^F = 2(1) - 25? - 2, and so & = 0. Hence the map
is conformal and p(t) = σ. q.e.d.

The rest of this section is devoted to computations of the ^-derivative of
various quantities associated with the harmonic maps. (We emphasize that in
contrast to the previous section, t is now a complex variable.) We postpone
discussing the ^-smoothness of these quantities until after Corollary 5.4.

Corollary 5.2. (i) d/dta\0^{t) = 0.
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{n)d/dta\o5?{t)=O.

(iii) d/dta\ou{t) = Φa/σ.

(iv) d/dta\Oaf(t) = 0 (Ahlfors' lemma; see [2, Lemma 2|).

(v) d/dt<*\Qe(t) = 0; d/dta\0E(p(t)) = 0.

Proof, (i) f(O) = 1, %f(t) > 1.

(ii) ^(0) = 0, 2f(t) > 0.

(iii) Φ(ί) = σβf(t)V(t). Applying d/dta\0 to each side,

Φ« = σ ^ r ^ ( ί ) F ( 0 ) + σ ^ ( 0 ) ^ r !?(<)
o

d

(iv) ,/"(<) = ^ ( ί ) - Jϊ?{t); (iii) shows this to be equivalent to Ahlfors'
lemma.

(v) e(ί) = βT(t) + ^ ( ί ) ; £(/>(*)) = /e(/»(ί))

Let Sym(0,2) denote the space of symmetric (0,2) tensors on M, and Jί
the space of positive definite symmetric (0,2) tensors. Now, forgetting the
complex structure on Tg, the family p{i) is a 6g—g (real) dimensional subspace
of Jί C Sym(0,2) with coordinates coming from the real basis {Φj.iΦj} of
QD(σ). Since Λί is open in Sym(0,2), we can identify TσJί with Sym(0,2);
then, using Corollary 5.2(v), the tangent vector to the one real parameter
family p(t) = tΦo dz2 + σe(t) dzdz + ίΦo cfc2 is given by Φo dz2 H- Φo dz2 =
2Re{Φod^2} € Sym(0,2). Thus we identify TσTg « QD(σ). All of this is
developed slightly differently in Fischer-Tromba [6]; they go on in [7] to show
that the natural L2 inner product on TσJΐ descends to a metric on Tg given
by

This metric is called the Weil-Petersson metric for Tg; its hermitian form is

(5.2) (Φ

The metric is known to have negative sectional curvature, not to be com-
plete but to be geodesically convex (see [27], [26], [28]).

We now continue our computations.
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Proposition 5.3.

(i)

(ϋ)

d2

d2

a2

d2

<T(t) = 0 =
d2

Proof. Our method is to take ί-derivatives of equation (III) to determine
the ί variations of -^(ί); then we use that information to solve for the t
variations of βf{t) in the ί-derivatives of equation (VI). This method is in
fact quite general: we discuss it more after Corollary 5.4.

For convenience set Φ(ί) = taΦa+t^Φβ. Then equation (III) can be written
as

= |Φ(ί)|2 = Π 2 | Φ α | 2 + tat

Applying d2/dtadtβ\0 to both sides gives

d2

dt«diP

+

So y

d

t)+ d

ί ) + at*
Q

*

Corollary 5.2(ii) and Lemma 5.1 reduce this to the first part of (i). The
other part of (i) is analogous.

Now apply d2/(dtQdt^) to (VI) giving, after changing the order of differ-
entiation,

Δ(^T(O)
d2

= 2
d2

dta

JT(t) - 2

o
d2

at?

STify.

Corollary 5.2(ii), Lemma 5.1, and the above computation of (d2

give
d2

= 2
d2

%f(t) - 2 ΦaΦβ

which yields (ii).
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Corollary 5.4. (i) d 2 / d ί α a F | 0 K ί ) = 0; consequently, the section i/(t):
Tg —> Belt(σ) is Weil-Petersson geodesic at t = 0, where Belt(σ) is the unit
ball of Beltrami differentials on (M,σ).

(ii) (Wolpert [26], Royden [15])

(iii)

(We note that the condition of being Weil-Petersson geodesic at a point
of Tg requires only agreement through second order with a Weil-Peterssoή
geodesic through that point.)

Proof. Similar to Corollary 1.2; v(t) is Weil-Petersson geodesic since, by
Ahlfors [2], μ(t) = t((Φ(a)/σ) is Weil-Petersson geodesic at t = 0, and so
agrees with v(t) through second order.

Remarks, (i) Royden [15] and Wolpert [27] derive the second variation of
hyperbolic area density along a Weil-Petersson geodesic (ii) with completely
different methods; that computation is the linchpin in their derivation of the
curvature tensor for the Weil-Petersson metric. We note that e(t) now has a
double role: it is both the energy density of the harmonic map w: (M, σ) —•
(M, p(t)), and it is the (1,1) part of the hyperbolic metric whose form in a
coordinate neighborhood is

(5.3) p{t) = Φ{t) dz2 + σe{t) dzdz + Φ{t) dz2.

Since the slice p(t) is Weil-Petersson geodesic at t = 0, the formulas of Wolpert
and Royden, together with the Ahlfors lemma, would have been enough to
prove (iii) in the second interpretation of e{t).

(ii) If we know the first n derivatives of βf(t) and <£*(£), then by taking the
(n + l)st derivative of equation (III), we can derive the (n + l)st derivative
of £?{t). If we know the first n derivatives of &(t) and the first n + 1
derivatives of Sf(t), we can derive the (n + l)st derivative of ^(t) by taking
the (n + l)st derivative of equation (VI). Thus we can recursively compute all
of the derivatives of %?{t) and ^(t), and hence compute an explicit formal
power series expansion for ρ{t) (using (5.3)). In a forthcoming paper, we will
show that this series converges for small |ί|.

(iii) We can continue this program to find that all of the odd derivatives
of βf{t) and 5f{t) vanish. We expect this since &(t) and J?(t) are solutions
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of the equations Δlog^T(t) = 2&(t) - 2\Φ{t)\2/{σ2JT{t)) - 2 and
\Φ(t)\'2/(σ2<%"(t)), both of which depend only on the modulus of Φ(t) and not
on its argument.

(iv) We can compute the formal power series expansion in t of v(i) to
any order, say k. Corresponding to such an expansion is a Ck variation in
hyperbolic metrics (Ahlfors-Bers [2]), and hence a Ck variation in the har-
monic maps by a theorem of Sampson [17]. Consequently, all of the quantities
associated to the harmonic maps are C°° in t.

(v) In a remark at the end of §3, we noted that we could pursue a study
of Tg through equations (III) and (VI), using QD(σ) (instead of the Beltrami
differentials, Belt(σ), on (M,σ)) as a parameter space. Both QD(σ) and
Belt(σ) are linear spaces, but we do not expect the rays to correspond. From
Corollary 5.4(i) and Remark (ii) above, we see that the rays agree through
second order, but no further.

Definition 5.5. Set D = -2(Δ - 2)" 1 where Δ is the Laplace-Beltrami
operator on (M,σ).

Then D is a self-adjoint, compact operator which is the identity on the
constant functions.

The technique of (ii) yields

Proposition 5.6.

0 )

d4

d4

= 0.

5.2. The geometry of the energy function. Next we interpret these
formulas in terms of the geometry of Teichmuller space. We can consider
the total energy of the harmonic map from (M,σ) to (M,p(t)) as a function
E(σ\ p(t)) on Tg. It is not hard to show that E(σ\ p{t)) has a global minimum
at t = 0 (see [11]). Since t = 0 is a critical point of J5(σ, p(t)) (also shown by
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the second part of Corollary 5.2(v)), the Hessian of E(σ; p(t)) is a coordinate-
independent inner product on TσTg. So, using the properties of D, we find
that Corollary 5.4(iii) implies

Theorem 5.7. RessE(σ;p{t))\0{Φa,Φβ) = 2(Φα,Φ^)w p .
Closely allied to E(σ; p(t)) is the function E(p(t);σ), the total energy of the

harmonic map from the variable source (M, p(t)) to the fixed target (M,σ).
Tromba [23] has proved a result analogous to Theorem 5.7 for this function
which we now show follows formally from Corollary 5.2.

Corollary 5.8 {Trombα [23]). Hessf7(p(ί);σ)|0(Φα,Φ/?) = 2(ΦQ,Φ / 3)w p.
Proof. Let p(tα,tβ) = φ - ^ Φ α + tβΦβ) and p(tα) = φ - ^ Φ α ) ; also

let <2?{p\\p2) be the anti-holomorphic energy density function (on M) of the
harmonic map from (M,pi) to (M,/?2). Then we have

0 =
dt*

; p(t"tt?)),
tα=o

because J?(p(tβ),ρ(ta,tβ)) > 0 with equality only when ta = 0. Thus

d

ίa=0

d2

Similarly

t=o

t=o

t=o

t=0

t=o

So

t=0

Since the same technique works for ^ , the theorem follows immediately from

Royden [15], Tromba [24], and Wolpert [27] have recently computed the
curvature tensor for the Weil-Petersson metric in terms of the operator D.

Theorem 5.9 (Royden, Tromba, Wolpert).

By coincidence of formulas we find
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Proposition 5.10.

d4

Proof.

E{σ;p(t))- -1) = J e(σ, p(t)) dA(σ) - Jf{σ; p(t)) dA(σ)

2J2>(σ;p(t))dA(σ).

d4

So

Remark. Because our coordinate system is geodesic at t = 0, and the
Weil-Petersson metric at p(ta,tβ) is given by

l d2

t<*=tδ=o

we know that

Thus, Proposition 5.10, since it does not involve a variation of the source met-
ric, is somewhat surprising. Recently, Jost [12] has used the above methods
to compute -Ra#~£M via the energy of harmonic maps.
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